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Shape Sensitivities of Capacitances of Planar
Conducting Surfaces Using the Method of Moments
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Abstract—1In this contribution, a new method is presented to
obtain the sensitivities of the capacitance or the charge with
respect to a geometrical parameter of planar conducting surfaces.
The charge density is found by an integral equation technique.
By applying the flux-transport theorem. a new integral equa-
tion for the total derivative of the charge with respect to a
geometrical parameter is derived from the original electrostatic
integral equation for the charge distribution. This new integral
equation is solved together with the original integral equation
by the method of moments using the same set of basis and test
functions. The method is also applied to obtain derivatives for
the inductance, impedance and effective dielectric constant. Some
simple electrostatic problems are presented, which illustrate the
capabilities of our approach. In these examples we also discuss
the difference between the geometrical derivatives obtained in this
way with geometrical derivatives which are obtained by a central
finite difference estimate. Next, some examples of the calculation
of geometrical derivatives of capacitance and inductance matrices
of multilayer, multiconductor thin microstrip lines are discussed.

1. INTRODUCTION

HE ANALYSIS of electromagnetic problems by various

numerical methods such as the finite element method
(FEM), method of moments (MoM), finite-difference time-
domain (FDTD) technique, or transmission line method (TLM)
has undergone an exponential growth in the last two decades
through the availability of powerful computing resources. In
the case of magnetostatics, electrodynamics, or microwave cir-
cuits, e.g., the use of electromagnetic simulators is already well
established [1]. For microstrip filter design, attention recently
focused on the application of electromagnetic simulators in the
design process [2] which leads to the realization of automated
nominal design, sensitivity analysis. and yield analysis based
on a rigorous electromagnetic analysis.

Efficient optimization methods make use of derivative in-
formation of the cost or performance function with respect
to some geometrical parameter of the considered structure.
These first derivatives are not readily available in electromag-
netic simulators. Clever error function fitting or interpolation
schemes are therefore invented to approximate these deriva-
tives [3], [4]. For the FEM-analysis, a successful attempt
has been made to directly obtain the derivatives during elec-
tromagnetic simulation [5]. For the MoM or the FDTD, no
publications in that direction are known to the authors.

Our efforts aim at the direct calculation of geometrical
derivatives when the analysis is based on a MoM technique.
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Because this research topic is quite new and in order to
illustrate the basic principles, we restrict ourselves in this
paper to the MoM used as an analysis method for electrostatic
problems of the following type: planar perfectly conducting
surfaces of a general shape embedded in a planar stratified
medium in two or three dimensions. A method is proposed
to calculate the derivative of the unknown charge density
with respect to some geometrical parameter of the surface.
Therefore, a new integral equation (IE) is derived from the
original electrostatic integral equation starting from a transport
theorem. Next, a general, computationally efficient procedure
using the MoM for solving this IE is presented. We also
investigate the relationship between meshing strategies and the
process for obtaining the desired derivative. The applicability
of the new IE is illustrated by some simple electrostatic
examples found in [6]-{8].

The work presented here sets forth some general principles
that will be extended to the full-wave analysis of microstrip
lines and MMIC’s. This will be presented in a forthcoming
paper.

The outline of this paper is as follows: in Section 1I
we derive a new IE for the total derivative of the charge
density with respect to some geometrical parameter of the
conducting surface. In Section III the possible singularities
of the kernel in this new IE are discussed. It will be formally
proved that these singularities are of the same order as in the
original IE for the charge density. In Section IV the IE is
validated by the analytically known example of the charge
distribution on a disk. A general computationally efficient
method for solving both the new IE and the original IE by
the MoM is outlined in Section V. In Sections VI and VII we
illustrate this general method with some simple electrostatic
examples. For the case of a single conducting patch in free
space, we discuss the difference between the geometrical
derivatives, obtained from the new IE and an estimation of
the derivatives based on a central difference formula and on
repeated evaluation of the charge density for geometrically
different surfaces. It will be shown that the way in which
the meshing is performed will greatly influence this finite
difference estimate. In Section VII we demonstrate that the
method can be applied to obtain derivatives with respect
to the distance between surfaces. The subsequent examples
in Section VIII demonstrate the applicability of the new
method for the calculation of the derivatives of the characteric
impedance and effective dielectric constant of a multilayer thin
microstrip line and the derivative of the mode-impedances of
multiconductor lines.
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II. INTEGRAL EQUATION FOR THE GEOMETRICAL DERIVATIVE
OF THE CHARGE

In electrostatics, the potential and charge distribution on a
perfectly conducting surface of general shape are related to
each other by the IE

/ / 7| #)q(7)dS’ W
Se

where V(7) is the potential on the surface (or union of
surfaces) Se, g(7') is the unknown charge distribution on the
surface and G(7 | #) is a suitable Green’s function kernel [9].
We assume that the metallisations are embedded in a planar
stratified medium (homogeneous and isotropic) which extends
infinitely in the z- and y-directions. Furthermore we suppose
that £ represents a gecometrical parameter which in some way
modifies the position of the surface in the plane or the shape
of the surface itself. The considered surfaces can be translated,
expanded, or shrunk, when ¢ is varied.

We review the flux transport theorems of Helmholtz and
Reynolds [10]. If the flux of a vector field F through a surface
Sg, which depends on a geometrical parameter £ is given by

o= [[ F.a5 )
//S& @

then the total derivative of this flux is given by

dq’ //Sﬁ[ +9V - F]d§+/dS§(F><T7)'df 3)

where 0S¢ is the circumference of the surface S¢ and v =
dr/d€ is the velocity of a point located on the surface. An

equivalent expression for (3) is
_(F. v)ﬁ] . d8.

- e

We prefer (4) over (3) since it is purely a surface integration
without a boundary contribution. If the surface S¢ moves or
expands in a plane in space with normal unit vector u, and
if the vector field is of the form F = U4, we can rewrite
expressions (3) and (4) as

e / *ds-i‘/ (Ut, x v)-dr (35
S 85
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where the velocity, in this case reduces to

d d
= .+ 20, @

+ F(V - %)

VYU +U(V - ﬁ)} ds (6)

with @, and %, the unit vectors in z- and y-direction. This
is also known as the Reynolds theorem which is formulated
here in two dimensions [10].

We will now apply the Reynolds theorem to the IE (1). The
theorem as given by (6) is the easiest to deal with because the
charge distribution becomes singular at the boundary of the
surface [11] and thus the line integral i (5) is to be defined
as a limiting value, which complicates calculations. Therefore,

we restrict our attention to the form (6) of the theorem. The
excitation position vector 7' is a function of the geometrical
parameter € if the surface is modified by this geometrical
parameter. Likewise, the observation position vector 7 can be a
function of &, if the observation point is located on the surface
S¢. Taking the derivative of the right- hand side of IE (1) with
respect to £ for all quantities that depends on 7 and ignoring
the dependence of ¥ on £ leads to the term

J1, [ (Geatr v 7)

where o' = ©(7'). To obtain this result, we applied the flux-
transport theorem and expressed the fact that the Green’s
function is independent of the geometrical parameter & itself
for each point in space, i.e., 3G(7 | 7) /3¢ = 0. The complete
derivative of the TE (1) with respect to &, taking into account
the dependence of 7 upon &, follows

9
o€

+ V' V'GF | 7)q(#) + 4" - V'G(F| F’)q(f’)] s’ (8)
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+ v - VG(F| F')q(F’)] ds’. ©))
The first three terms in the integrand of (9) stem directly
from (8). By introducing the new unknown variable p(7’) =
qu( ) +2'-V'q(7'), which is the total derivative of the charge
density at a point with respect to the parameter £, and noting

the fact that the Green’s function only depends upon |7 — 7’|,
a new IE can be formulated as follows

V(F)+ v - VV(¥)

/ G [Pl + (V' )G | #)a()
(@ ) VG| )a(F))dS.
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Equivalently

—V( 7+ v- VV(F)
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+/ V' (0 - 0)GFE|F)]g(7)ds’.  (11)
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If the total derivative of the potential and the charge density
are known on the entire surface Sg, this IE can be solved
for p(7’). Since a perfectly conducting surface stands on a
constant potential and the tangential electric field is zero on
this surface, the left-hand side of (11) will be zero if ¥ is
tangential to the plane of S¢. First we notice that in (11) the
same integral kernel G(7 | 7') appears as in the original IE (1)
and that a modified kernel of the form

V' -0 - 9)G(F| )] (12)
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appears in front of the charge density. Second, when a single
surface S¢ undergoes a translation, the velocity vector reduces
to a constant vector (5 = ¢ = ¢) and the expected zero
solution p(#') automatically follows from the new IE (11).

IITI. SINGULAR BEHAVIOR OF THE MODIFIED KERNEL
IN THE NEW INTEGRAL EQUATION

The Green’s function kernel in three dimensions in the
original IE (1) has a singularity of the form

1 C

=

(13)

with ' some constant and p = |F — #|. This is a weak
singularity which can be integrated over a surface. In the
modified kernel (12) a divergence term of the velocity together
with a gradient term of the Green’s function arises. The
gradient of the singular part (13) of the Green’s function with
respect to the excitation vector is given by

(-7

T- 14
e (4
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This is a strong singularity if the observation and excitation
position vectors coincide. In that case, the second integral in
(11) must be defined by its principal value. This mathematical
difficulty disappears when the velocity vector has at least a
component which is linear in 2 or y. If we assume that the
velocity (7) is of the form o(7) = (ax + By + v)u.. then the
singular part of the third term of the right-hand side of (10)
can be expanded as

’ ! ('77/ _ .7)) ! !
la(z’ —z) + By — y)|—5—q(")dS".  (15)
JJ 8 P
Using the transformation
=
¥ = x=peosé (16)
Y —y=psing
The previous expression becomes
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which shows that no strong singularities are in fact present.
Theretore, we conclude that the singular behavior of the
modified Green’s kernel is not stronger than the one in the
original IE. and hence the involved computational problems
are not of a more severe nature.

IV. CHARGE DISTRIBUTION ON A CIRCULAR DISK

One of the few electrostatic three-dimensional examples
where the charge density is known analytically is that of a
circular disk on constant potential. The charge distribution for
a circular disk having potential V; in a homogeneous, isotropic
medium is given by the Maxwell distribution {11], [12]

o 4:V0€0€r 1

(1<7'7 (Z) = - a2 = T2

(18)

where a is the radius of the disk, » is the radial distance
between a point on the disk and the origin, ¢g the permittivity
in vacuum, and ¢, the relative permittivity of the medium.
The dependence of the charge on both » and ¢ has been made
explicit. We will validate the new IE (11) with this analytical
example. The derivative of the charge density with respect to
the geometrical parameter ¢ is given by

oa ((12 _ ,,2)3

with M = 41V5epe, /7. The gradient vector is given by

yra)= 24y T g
Aral =g U= (a2 = r2)3 !

(20)
where u, is the unit vector in radial direction. Now consider
an expansion of the disk in the radial direction with an amount
Agq. The expansion is chosen such that each point on the
disk moves over a distance given by Aa(r/a)u,.. or has an

expansion velocity of ¥(r.a) = (r/a)u,. Hence p(r,a) is
given by
1 q(r)
ra)=—M-—m———e = -, 21
p(r.a) T ” 2L

In this case the total derivative of the charge density at each
point is directly proportional to the charge density at that point.
We check if the IE (11) above is fullfilled. The left-hand side
of (11) is zero as ¥ is a vector lying in the plane of the
perfectly conducting disk. The second part of the right-hand
side of the IE becomes, substituting the Green’s function for
a homogeneous medium

1 = 1
Y7/-[(v/-—'ﬁ)—}
dmeger 0
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(22)

The opposite result appears in the first part of the right-hand

side of (11)
RGO
T drepe, a P

which leads to the desired zero result.

G(r |7 )p(7)

(23)

V. GENERAL METHOD FOR SOLVING THE INTEGRAL
EQUATION WITH THE METHOD OF MOMENTS

We propose the following procedure for solving the pair
of IE’s (1) and (11): the IE (1) is solved in the “usual”
manner with the MoM., i.e., we expand the unknown charge
distribution over a set of N basis functions B, (') as

N
q(7) ~ gn(7) = Z 4;B; (77/) (24)
J=1
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and after testing with the N test functions 7, (7) (1) results in
a system of linear equations

N
V= ZKi]q]
7=1

where K;, and V, are given by

K, = / / () / G(r|7)B,(7)dS'dS  (26)
55 Sg

v, = / /S VS

To solve the new IE (11), we expand the unknown total
derivatives of the charge over the same set of N basis
functions

(25)

@n

N

p(r) = pn(r) =Y p; B, (7).

1=1

(28)

The charge density gy (7) given by (24) is an approximation
of the exact charge distribution. The goodness of this approxi-
mation is determined by the choice of basis and test functions
[13]. We use this approximate charge density to construct the
right-hand side of (11). The expansion (24) is introduced in
the IE (11) and the same set of test functions 73(7) is used to
test (11) which leads to the equations

N N
Wi=> Lijg; =Y Kijp (29)
1=1 1=1
where
Ly :// T,(7) // V' (@0 - 8)G(F| 7)) B,(7)dS'dS
Se¢ S¢
(30)
Wiz// Ti(T’)[—Q-V(F)+17~7V(7“)]d5'd5’. (31)
s o€

The mathematical requirements for the basis (expansion) and
test (weighting) functions, used in this procedure, can be found
from [13] and [14]: the basis functions must be in the domain
of the operator A, given by

Aw://s G(7 |7 )z(7)dS’

and simultaneously in the domain of the operator B, given by

By = / [5 A6 G (i G

(32)

Furthermore, the basis functions have to form a complete set
for the range of A and B. For simple basis functions such as
pulse basis functions, the first requirement will normally be
fulfilled, the second is much more difficult to prove. For the
test functions, the main requirement is that they can represent
the excitation: they have to be a proper representation of both
the potential and the geometrical derivative of the potential
[14].

By constructing the right-hand side with the approximate
charge density gn(7'), a certain error is introduced. This

error on the right hand is closely related to the error on the
charge which arises from applying the MoM to (1). Little is
known in the literature about this error. From a theoretical
viewpoint, one can say intuitively if the operator B satisfies
some property of boundedness, then the approximate right-
hand side converges to the exact one when increasing the
number of cells, Furthermore, one could argue that the charge
distribution need not be known in a very accurate way to
construct this right-hand side because an integration of the
modified Green’s function V' - [(?/ — 0)G(F|7)] with the
charge distribution is performed (in most cases, this is a
convolution). Numerical experiments must indicate in how
far errors are introduced by this step. From the results in
the examples in Sections VI, VII, and VIII we can certainly
conclude that this error is negligible.

By using a single set of basis functions and a single
set of test functions for both IE’s, the same system matrix
K = [K,,] appears in the system of (29) as in the original
system (25). Once (25) is solved and the left-hand side of
(29) constructed, only N2 arithmetic operations are needed to
obtain a geometrical derivative, provided a LU-decomposition
scheme is used when solving the matrix equations.

Usually, a designer is not interested in a very accurate
solution for the charge density at each point but in some global
observable quantities such as the total charge or the capaci-
tance of the conductors. The total charge on the conducting
surface Sg is given by

Qz//séq(f)ds

and the derivative with respect to the geometrical parameter

¢ by
% ://Sg p(f)dS-i—//sﬁ )V 0)dS  (35)

which can be evaluated once the solution for p(7) and ¢(r)
is knowrm.

The computational efficiency of the method can be appre-
ciated by considering two possible methods for calculating
derivatives. If we suppose that the surface is divided into N
cells and that the structure is modified by M geometrical
parameters, the total number of arithmetic operations for
solving for the geometrical derivatives with the procedure
described above is proportional to N3/3 + (M + 1)N?. The
N3/3 term originates from a LU decomposition scheme. We
contrast this with a central finite difference calculation of the
derivative, i.e., the derivative is estimated by perturbing the
planar surface twice, solving the charge density twice and
taking the difference of the calculated charges or capacitances.
The total number of operations in that case would be N3/3 +
N2 +2Ma(N)N?3/3 + N? where a(N) is a factor between
zero and one (but in general closer to one) which takes into
account that for inversion of the perturbed system of equations
some part of the original inverse matrix can be exploited. Our
method is superior in number of operations to the difference
scheme by about a factor of 1 + 2M «(N). Furthermore, we
will show that the central finite difference estimate depends

(34)



202 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 44, NO. 2. FEBRUARY 1996

crucially on the meshing of S¢, which is not the case for our
new method.

In the next sections, the approach is illustrated by some
simple electrostatic examples, where a geometrical parameter
is varied over some interval. We emphasise the ideas involved
and not the perfection of using the MoM. We discuss the
relation between the meshing strategies by which discretization
of the structure is performed in the MoM and a central
difference estimate of the desired derivative, contrasting this
with the geometrical derivative calculated by our new method.

V1. CAPACITANCE OF A SINGLE RECTANGULAR PLATE

We consider the case of the capacitance of a rectangular
perfectly conducting plate with width w in the z-direction and
length L in the y-direction at a potential of 1 V in free space.
No exact analytical solution of the charge distribution in terms
of the geometrical parameters w, I and space coordinates x
and y is known for this case. We vary the length L of the
plate. In order to obtain the charge density, we subdivide the
plate in a mesh of rectangular cells. The charge distribution
and the geometrical derivative of the charge are expanded in
pulse basis functions and point-matching is used for testing.
The derivation of the matrix elements ,,, given by (30), is
straightforward and is given in the Appendix.

Two meshing strategies are followed during the expansion
of the surface. For the first meshing strategy the elementary
cell dimension is proportionally adapted with the length L of
the plate while the total number of cells remains constant.
We call this meshing strategy the “moving mesh strategy,”
stressing the fact that the mesh moves with the structure. In
the second meshing strategy, we restrict the cell dimension to
a maximum value. The total number of cells will vary with the
value of L. This meshing strategy is called the “fixed mesh
strategy.” emphasizing the fact that the location of the cells
remains fixed. We are interested in the total capacitance of the
plate C' = Qot/V, the derivative of the total capacitance of
the plate with respect to the parameter L, and finally a central
finite difference estimate of this derivative according to the
fixed step two-point formula

ac _ oL h) - oL-4)
dL h

where A is a small variation of the length. Capacitance
values are normalized with a factor 4megc,. The geometrical
derivative of the capacitance, as a solution of the integral
equation, is designated by IED (integral equation derivative)
while the geometrical derivative, obtained with the finite
difference estimate (c.g., (36)) is designated by FDD (finite
difference derivative).

+ O(h?) (36)

A. Moving Mesh Strategy

The rectangular plate of dimension 1.0 by 1.0 (in arbitrary
units) is subdivided with eight divisions in the z-direction and
80 in the y-direction. We increase the length L from 1.0 to
10.0 in steps of 0.1 in the y-direction such that the dimension
of a cell varies from 0.0125 to 0.125 and the total number of
cells remains constant at 640 cells. We also calculated the same
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1.4 /74 i
812 . 0147
2 | —= g
g 1 ~ g
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Sos ] Ve 0.13 Bx
] - 58
<08 ] g
Ny s
é 0.4 ¢~ 0.12 %
AN 2
0.2 0
0 + 0.1
1 2 3 4 5 [ 7 8 9 10
Length L of the plate
Fig 1. Capacitance and relative error between the capacitance calculated

with 640 cells and the capacitance calculated with 1280 cells (moving mesh)
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1 2 3 4 5 6 7 8 9 10
Length L of the plate

Fig. 2. Dernvative of the capacitance and relative error between the deriva-
tive of the capacitance calculated with 640 cells and the derivative of the
capacitance calculated with 1280 cells (moving mesh)

parameter sweep with 160 cells in the y-direction (total of 1280
cells) as a reference result. In Fig. 1 the increasing capacitance
as a function of the length L is shown, together with the
relative error between the capacitance calculated with 640 cells
and the one, calculated with 1280 cells. As expected we see
that the relative error increases with the length or, otherwise
stated, the resolution of the solution (the number of basis
functions per unit length) decreases with the length. In Fig. 2
the IED for the case of 640 cells and the relative error with the
IED, calculated with 1280 cells is shown. The overall relative
error is slightly higher than in Fig. 1 and shows a maximum.
This can be understood as follows: by increasing the length
with a fixed number of cells, the relative error with respect to
the 1280-case for both ¢(7') and %Q(T’)+'E’~V’q(f’) increases
because resolution decreases. The total derivative of the charge
however is given by a combination of the C%q(f’ Y+ V()
and a term containing ¢(7') and V - o = 1/L (see (35)). This
last term is decreasing with the length which implies that the
sum must reach a maximum for some value of L.

We now compare the IED with a two point central finite
difference estimate of the capacitance for » = 0.1 and consider
the relative error

ac — (42
Erel — Kd )II&]?_C) (dL)FDDl . (37)
dl ) FDD
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Fig. 3. Relative error between finite difference derivative (two-point and
four-point) and integral equation derivative (moving mesh).

This is a measure for the correspondence between FDD
(dC/dL)rpp, and the IED (dC/dL)igp. Both values
(dC/dL)rpp and (dC/dL)gp differ from the exact value of
the derivative. Large values of (37) can either be due to an
incorrect calculated IED or to a poor estimate of the FDD.
A poor estimate of the FDD can normally be improved by
decreasing the step h or taking more points into consideration.
For example, a better FDD estimate would be given by the
four-point formula

dC _ O(L —2h) —8C(L — h) +8C(L + h) — C(L + 2h)
dL 12h

+ O(h*) (38)

The relative error for the two-point estimate (36) and the four-
point estimate (38) arc shown in Fig. 3. The relative etrors for
the four-point estimate are extremely small which leads to
the conclusion that the IED almost entirely coincides with the
FDD and that both values must be close to the exact value
(within 0.156% of the 1280 case).

From this example, we can conclude that both the derivative
of the charge and the charge itself are well represented by
the chosen basis functions and that the error, introduced by
approximating the right-hand side of (11), must be negligible
because a FDD gives no better results than the IED. Both
calculated and estimated gradients have a continuous charac-
teristic, hence both could be used directly in an optimization
procedure based on gradient information. For the central dif-
ference estimate, however, the capacitance must be evaluated
twice or four times and a judicious choice of the step width
of the perturbation around the central abscissa point or the
number of points in the finite difference formula must be made,
taking into account the rate of the variation of the capacitance.
In the next subsection we will take the capacitance and the
derivative of the capacitance, calculated with 1280 cells as the
exact reference result.

B. Fixed Mesh Strategy

The rectangular plate with the same initial dimensions and
parameter interval is meshed up in the following way: the total
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Fig. 4. Capacitance and relative error between the capacitance (fixed mesh)
and the capacitance calculated with 1280 cells.
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Fig. 5. Integral equation derivative of the capacitance and finite difference
derivative together with the number of cells in y-direction (fixed mesh).

number of divisions varies in such a way that the inequality

L

AL = N, <T (39
is always fullfilled. Here Ny, is the number of divisions in
the y-direction of L and 7 is the maximum dimension of one
division in the y-direction. In this case the maximum is chosen
to be 0.125. In Fig. 4 the capacitance and the relative error
between this result and the reference result with 1280 cells
is shown. As expected, this relative error is higher because
of the smaller number of cells for small L values. The etror
decreases down to 0.14% where resolution is the same as in
Fig. 1 (640 cells). Remark that the curve of the relative error
is not continuous because N can differ for each value of L.

We first compare the IED with the FDD: Fig. 5 shows the
IED and FDD in conjunction with the number of cells in
the y-direction. Remark the difference between the IED-curve
and the FDD-curve. The number of cells in the y-direction
is steadily increasing from 9 to 80 but at certain values of L,
where the inequality (39) is automatically fullfilled, the number
of cells stays constant. At these values of L a discontinuous
behavior of the FDD is observable. The IED, however, has
a perfectly smooth characteristic. The jumpy behavior of the
FDD is magnified when considering the relative error (37)
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between the IED and the FDD (see Fig. 6). The relative error
curve jumps from one higher cutve to another curve when the
number of cells remains constant. The relative error is small
when the number of cells stays constant. However, when the
number of cells changes in going from one value of L to the
next one, the discretization error changes and the FDD differs
more from the IED. This means that if we want to use a finite
difference formula for obtaining smooth. continuous derivative
estimates the same grid must be used for all parameter values
and consequently the number of cells must be high enough
from the beginning even for small L-values.

A comparison with the capacitance, calculated with 1280
cells, is depicted in Fig. 7. Both estimates differ from the
exact reference result. The FDD is certainly not more accurate,
taking into account the relative error on the capacitance
itself (Fig. 4). Cancellation of discretization errors brings this
estimate closer to the exact curve for small values of L but
at larger values of L. the curve diverges. The FDD converges
smoothly to the exact solution when resolution is increased.

The main conclusion we draw from this example is that if
we change the number of cells when perturbing around some
value of L. a poor discontinuous estimate will result. For a
simple rectangle, as in our case, one can still choose a meshing
strategy such that one knows beforehand for what values of

1.1 0

<
0.9 -

~ a
o L, \ g
08 4+—~—[ 3 7 v 457
2 2
0.7 - L 2
— b=
X D
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Fig. 8. Total charge and integral equation derivative of the charge

L a change in the number of divisions will occur. For a
general shape however, where a mixed mesh of rectangles and
triangles is used, this prediction of a change in the number of
cells is much more difficult. Due to the possible discontinuous
behavior, the FDD is in general not suitable for use in an
optimization procedure, while the IE method proposed here
does not suffer from this inconvenience.

VII. CAPACITANCE BETWEEN TWO EQUIPLANAR
RECTANGULAR PATCHES AS A FUNCTION
OF SEPARATION DISTANCE

The IE not only allows us to calculate the sensitivity of the
charge with respect to geometrical parameters which directly
modify the shape of the surfaces, such as width or length, but
also with respect to geometrical parameters between surfaces.
To illustrate this, we consider the case of two conducting
plates in the same plane (inset of Fig. 8). The dimensions
are shown on the figure. The distance D between the plates
varies from 0.05 to 0.55 in steps of 0.01. The number of cells
in the z-direction is 20 and 10 in the y-direction. Plate 1
is placed at 1 V and plate 2 at —1 V. In Fig. 8 the positive
charge on plate 1 and the derivative of this charge with respect
to the distance D is shown. The relative error between the
FDD and the IED is depicted in Fig. 9. The relative error is
considered for a two-point FDD (36) and a four-point FDD
(38). The four-point estimate decreases the relative error over
two decades which means that the FDD and IED coincide
entirely. The relative error is higher at the beginning of the
parameter interval because the step size 0.01 is there one-fifth
of the total abscissa value.

VIII. MULTILAYER MULTICONDUCTOR
THIN MICROSTRIP LINES

Under quasi-TEM assumptions, a general two-dimensional
configuration of /N microstrip lines, embedded in a multilay-
ered medium above a ground plane, supports N eigenmodes,
each characterized by their own mode-impedance and mode-
velocity. For two-layered, single line microstrips, accurate
analytical design formulas exist which for a given character-
istic impedance gives the microstrip width to substrate height
ratio [15]. For coupled lines on a one layered substrate, design
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formulas exist for the odd-mode impedance and even-mode
impedance in terms of physical geometry [16]. For a gen-
eral multiconductor transmission line more approximations—if
possible—must be made to obtain analytical formulas for
the geometrical dimensions in terms of mode-impedances or
capacitance matrix and inductance matrix elements.

For a more accurate calculation of two-dimensional (2-D)
or three-dimensional (3-D) capacitance matrices of general
multiconductor interconnects in a multilayered medium the
integral equation method is a commonly used technique. The
integral (11) is also applicable to calculation of derivatives
of capacitances of such strips. Here we will only consider
infinitely thin perfectly conducting strips. In that case the
surface becomes a line and the velocity ¥ also becomes
one dimensional. As the inductance calculation reduces to an
equivalent so-called vacuum capacitance calculation [9], we
can not only obtain geometrical derivatives of capacitances but
it also becomes possible to obtain derivatives for the mode-
impedances and mode-velocities and to design the physical
geometry for, e.g., given mode-impedances. To illustrate this
we consider two examples:

A. A Three-Layered Single Microstrip Line

As a first example we consider a microstrip in a three-
layered medium [17], [18], which is depicted in Fig. 10 and
where H = 0.206h, e; = 9.6¢, €2 = 2.6¢g and the top layer is
air. We calculate the derivative of the characteristic impedance
and effective permittivity with respect to the width w of the
microstrip (or w/h holding h constant). The Green’s function
for the layered substrate was approximated with complex
images [19], [20]. The error introduced by this approximation
is neglible (0.000 175% on the Green’s function in the spectral
domain). For the microstrip 500 pulse basis functions were
used. In Fig. 10, the effective dielectric constant is shown
together with the derivative with respect to the aspect ratio
w/h for narrow lines (w/h < 1). In Fig. 11 the characteristic
impedance and the derivative of the characteristic impedance
with respect to w/h is depicted. The maximum relative error
between the IED and FDD for the effective \dielectric constant
is 0.001 62%. The maximum relative error between the IED
and the FDD for the characteristic impedance was 0.0039%.
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Fig. 10. Effective dielectric constant and derivative of the effective dielectric
constant with respect to w/h.
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Fig. 11. Characteristic impedance and derivative of the characteristic
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B. Three Symmetrical Coupled Microstrip Lines

As a second example we consider a symmetrical three-line
microstrip configuration as in [21]. The geometry is depicted
in Fig. 12 and the dimensions are w = A = 25 mil, ¢, = 9.8
and the top layer is air. These three parallel coupled lines
can be used for the design of compact band-pass filters [22].
Under quasi-TEM assumption, the structure supports three
fundamental modes which we denote by EE, OE, and OO
as in [21]. The mode-impedances are given by

1

Cq/ Cw,axrcw,dlel

where ¢ is the velocity of light, Cy, gie1 the mode capacitance,
when the substrate is present, C; ,i: the mode capacitance
when the substrate is replaced by air and z is equal to EE, OE
or O0. These mode capacitances C;, giel (or Cy air) are given
in terms of the capacitance matrix elements C;; as (omitting
the subscript air or diel)

_ —(C11 = Cap + C13) — V(C11 — Caz + Ci3)? + 3CF,
r= 2012
Cog = C11 — Ci3
Cgg = C11 + pCr2 + Cis
Coo = Ca2 — pCi2.

Z, = (40)

(41)
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Once the capacitance matrix and the derivative of the capaci-
tance matrix with respect to a geometrical parameter have been
determined, the derivatives of the mode-impedances can easily
be found. For each strip 100 basis functions were used. The
mode-impedances together with the derivatives with respect
to the parameter s (or s/h. holding A constant) are calculated
with the method presented above and shown in Fig. 12. Again
excellent agreement with a FDD was obtained.

IX. CONCLUSION

A new IE for the derivative of the charge with respect
to some geometrical parameter has been derived using a
transport theorem. The geometrical parameter modifies the
shape of the surface or is related to distances between the
surfaces. The solution of the new IE can be efficiently found
by solving for the charge density by the MoM, substituting
the charge solution in the new IE and applying the MoM
on the new IE with the same set of basis functions and test
functions as used for solving the original IE. We showed
the applicability of this procedure for various planar three
dimensional and two dimensional capacitance calculations.
The obtained derivatives are perfectly continuous and smooth
and above all this continuity is independent of the structure
meshing, contrary to derivatives which are obtained by a
central finite difference estimate. Most of all we emphasise
the fact that no perturbed geometry problem must be solved,
since the derivatives are obtained from one single solution of
the problem. Thus. a computationally efficient method, based
on an accurate integral equation technique, has been developed
to obtain the sensitivity of the solution with respect to a geo-
metrical parameter. Futhermore, it was shown that our method
can also be used to obtain derivatives for mode impedances
and mode velocities as illustrated for some coupled microstrip
line configurations.

APPENDIX

A. Potential Due to a Uniformly Charged Rectangle

Consider a uniformly charged rectangle with dimensions
Ar, and Ay; and center point (z,.y,, z,). The potential per

2, FEBRUARY 1996
unit charge V(z,y, 2

Vo) = / /

T T

where 7 = 2 — z; remains constant and where

is given by [8]

dz’dy’ (42)

Ag, Az,

:vl—xj—% To=T; + —
2 2 (43)

Ay, Ay,

yl—yj’“'_Z y?*f’!y-i-—

After integration (42) yields

1 (c+ A)(d+ B)
WY 2) = r; —z)log| —F——=
Viz.y.2) 4W€0€T{($] z) Og{(d—}—C’)(c—%D)
Asj {<d+B><d+0>
(¢+ D)(c+ A)
(a+ A)(b+ B)
—ylog| ———~—F—+——2
- v) Og{(b%—D)(a—l—O)
Ay; [(b+B)(b+D)}
2 g | T EAV T L)
T ey O)at 4)
ac bd
— Z arctan {Z—A} — Z arctan {ﬁ}
ad be
+ Z arctan [%} + Z arctan [ﬁ} }
(44)
where
Az Az
a=uz, ZJ—m b:x]—l—Tj—x
A
c:yj—?%~ d= ]—G—%*y (4%
A=+Vad?+c2+ 22 b2 4 d2 + Z2
C=\Vdu?2+d?+ 72 b2 4+c2 422, (46)

B. Calculation of the Matrix Elements L,,

In the case the velocity vector is given by © = ayu,, the
matrix elements L., in free space can be written as follows

Y1
47T€()6r / /yz By

X { y _yz)
(z" — )2+ (v — u,)2 + Z2)1/2

where (x,,v,.%;) is the center point of the observation cell.
This can be simplified into the following result

o b+ B b+ D
log| 2| _ i
dmege, {d Og[a + C} C10g|:a+ A}} “3)

with the same notations as in (43) and (46) but with the z
replaced by z, and the y by y,.

ZJ

}dw’dy/ 47)

L

1y —
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