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Shape Sensitivities of Capacitances of Planar

Conducting Surfaces Using the Method of Moments
Jan Ureel, Student Member, IEEE, and Daniel De Zutter, Member, IEEE

Abstract— In this contribution, a new method is presented to

obtain the sensitivities of the capacitance or the charge with
respect to a geometrical parameter of planar conducting surfaces.
The charge density is found by an integral equation technique.

By applying the flux-transport theorem, a new integral equa-

tion for the total derivative of the charge with respect to a
geometrical parameter is derived from the original electrostatic

integral equation for the charge distribution. This new integral

equation is solved together with the original integral equation
by the method of moments using the same set of basis and test
functions. The method is also applied to obtain derivatives for

the inductance, impedance and effective dielectric constant. Some

simple electrostatic problems are presented, which illustrate the
capabilities of our approach. In these examples we also discuss
the difference between the geometrical derivatives obtained in this

way with geometrical derivatives which are obtained by a central

finite difference estimate. Next, some examples of the calculation
of geometrical derivatives of capacitance and inductance matrices

of multilayer, mnlticonductor thin microstrip lines are discussed.

I. INTRODUCTION

T

HE AFJALYSIS of electromagnetic problems by various

numerical methods such as the finite element method

(FEM), method of moments (MoM), finite-difference time-

domain (FDTD) technique, or transmission line method (TLM)

has undergone an exponential growth in the last two decades

through the availability y of powerful computing resources. In

the case of magnetostatics, electrodynamics, or microwave cir-

cuits, e.g., the use of electromagnetic simulators is already well

established [1]. For microstrip filter design, attention recently

focused on the application of electromagnetic simulators in the

design process [2] which leads to the realization of automated

nominal design, sensitivity analysis, and yield analysis based

on a rigorous electromagnetic analysis.

Efficient optimization methods make use of derivative in-

formation of the cost or performance function with respect

to some geometrical parameter of the considered structure.

These first derivatives are not readily available in electromag-

netic simulators. Clever error function fitting or interpolation
schemes are therefore invented to approximate these deriva-

tives [3], [4]. For the FEM-analysis, a successftd attempt

has been made to directly obtain the derivatives during elec-

tromagnetic simulation [5]. For the MoM or the FDTD, no

publications in that direction are known to the authors.

Our efforts aim at the direct calculation of geometrical

derivatives when the analysis is based on a MoM technique.
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Because this research topic is quite new and in order to

illustrate the basic principles, we restrict ourselves in this

paper to the MoM used as an analysis method for electrostatic

problems of the following type: planar perfectly conducting

surfaces of a general shape embedded in a planar stratified

medium in two or three dimensions. A method is proposed

to calculate the derivative of the unknown charge density

with respect to some geometrical parameter of the surface.

Therefore, a new integral equation (IE) is derived from the

original electrostatic integral equation starting from a transport

theorem. Next, a general, computationally efficient procedure

using the MoM for solving this IE is presented. We also

investigate the relationship between meshing strategies and the

process for obtaining the desired derivative. The applicability

of the new IE is illustrated by some simple electrostatic

examples found in [6]–[8].

The work presented here sets forth some general principles

that will be extended to the full-wave analysis of microstrip

lines and MMIC’S. This will be presented in a forthcoming

paper.

The outline of this paper is as follows: in Section II

we derive a new IE for the total derivative of the charge

density with respect to some geometrical parameter of the

conducting surface. In Section III the possible singularities

of the kernel in this new IE are discussed. It will be formally

proved that these singularities are of the same order as in the

original IE for the charge density. In Section IV the IE is

validated by the analytical y known example of the charge

distribution on a disk. A general computationally efficient

method for solving both the new IE and the original IE by

the MoM is outlined in Section V. In Sections VI and VII we

illustrate this general method with some simple electrostatic

examples. For the case of a single conducting patch in free

space, we discuss the difference between the geometrical

derivatives, obtained from the new IE and an estimation of

the derivatives based on a central difference formula and on

repeated evaluation of the charge density for geometrically

different surfaces. It will be shown that the way in which

the meshing is performed will greatly influence this finite

difference estimate. In Section VII we demonstrate that the

method can be applied to obtain derivatives with respect

to the distance between surfaces. The subsequent examples

in Section VIII demonstrate the applicability of the new

method for the calculation of the derivatives of the characteric

impedance and effective dielectric constant of a multilayer thin

microstrip line and the derivative of the mode-impedances of

multiconductor lines.
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IL INTEGRAL EQUATION FOR THE GEOMETRICAL DERIVATIVE

OF THE CHARGE

In electrostatics, the potential and charge distribution on a

perfectly conducting surface of general shape are related to

each other by the IE

where V(F) is the potential on the surface (or union of

surfaces) SC, q(#) is the unknown charge distribution on the

surface and G(F I F’) is a suitable Green’s function kernel [9].

We assume that the metallisations are embedded in a planar

stratified medium (homogeneous and isotropic) which extends

infinitely in the $- and y-directions. Furthermore we suppose

that & represents a geometrical parameter which in some way

modifies the position of the surface in the plane or the shape

of the surface itself. The considered surfaces can be translated,

expanded, or shrunk, when & is varied.

We review the flux transport theorems of Helmholtz and

Reynolds [10]. If the flux of a vector field F through a surface

S&, which depends on a geometrical parameter ~ is given by

then the total derivative of this flux is given by

where 13SCis the circumference of the surface SC and u =

dF/d< is the velocity of a point located on the surface. An

equivalent expression for (3) is

We prefer (4) over (3) since it is purely a surface integration

without a boundary contribution. If the surface S( moves or

expands in a plane in space with normal unit vector ti. and

if the vector field is of the form ~ = Uiiz, we can rewrite

expressions (3) and (4) as

where the velocity, in this case reduces to

dx _ dy _

g = ~“’ + @
(7)

with UZ and Uv the unit vectors in x- and y-direction. This

is also known as the Reynolds theorem which is formulated
here in two dimensions [10].

We will now apply the Reynolds theorem to the IE (l). The

theorem as given by (6) is the easiest to deal with because the

charge distribution becomes singular at the boundary of the

surface [11] and thus the line integral in (5) is to be defined

as a limiting value, which complicates calculations. Therefore,

we restrict our attention to the form (6) of the theorem. The

excitation position vector F’ is a function of the geometrical

parameter & if the surface is modified by this geometrical

parameter. Likewise, the observation position vector F can be a

function of<, if the observation point is located on the surface

Sg. Taking the derivative of the right- hand side of IE (1) with

respect to g for all quantities that depends on # and ignoring

the dependence of F on < leads to the term

1+ ~’.ti’G(F I F’)q(F’) + fi’ . ~’G(F I ~’)q(~’) dS’ (8)

where ti’ = ti(#). To obtain this result, we applied the flux-

transport theorem and expressed the fact that the Green’s

function is independent of the geometrical parameter & itself

for each point in space, i.e., ~G(F I P’)/~& = O. The complete

derivative of the IE (1) with respect to ~, taking into account

the dependence of F upon <, follows

+ (~’. i’)G(F /#)q(T’) + # . t7’G(F I F’)q(F’)

1+E.~G(F I F’)q(F’) dS’. (9)

The first three terms in the integrand of (9) stem directly

from (8). By introducing the new unknown variable P(P’) =

& q(~’ ) +u’. ~’q(r’), which is the total derivative of the charge

density at a point with respect to the parameter ~, and noting

the fact that the Green’s function only depends upon \P – ;’1,

a new IE can be formulated as follows

& + ‘u . SW(F)

—-/7[G(P I#)p(#) + (V’
s<

+ (ii – Z) . ~’G(F

Equivalently

&v(T) + w . VV(F)

——
//

G(F I #)p(#)dS’
s<
,..

. i’)G(r I #)q(#)

#)q(#)]dS’. (lo)

+ !1 V’ . [(u’ – u)G(T \ #)]q(#)dS’. (11)
s<

If the total derivative of the potential and the charge density

are known on the entire surface SE, this IE can be solved

for P(F’). Since a perfectly conducting surface stands on a
constant potential and the tangential electric field is zero on

this surface, the left-hand side of (11) will be zero if u is

tangential to the plane of S(. First we notice that in (11) the

same integral kernel G(F I F’) appears as in the original IE (1)

and that a modified kernel of the form

V’ ~[(u’ – ti)G(F I T’)] (12)
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appears in front of the charge density. Second, when a single where a is the radius of the disk, r is the radial distance

surface S< undergoes a translation, the velocity vector reduces between a point on the disk and the origin, co the permittivity

to a constant vector (~ = O’ = c!) and the expected zero in vacuum, and c, the relative permittivity of the medium.

solution P(F’) automatically follows from the new IE (11), The dependence of the charge on both T and a has been made

explicit. We will validate the new IE (11) with this analytical

111, SINGULAR BEHAVIOR OF THE MODIFIED KERNEL example. The derivative of the charge density with respect to

IN THE NEW INTEGRAL EQUATION
the geometrical parameter a is given by

The Green’s function kernel in three dimensions in the ?lq(r, a) = _AI a

original IE ( 1) has a singularity of the form ~a ~
(19)

(13) with M = 4L~cOc, /T. The gradient vector is given by

a(v)ti, _ ~~ rwith C: some constant and p = IF – F’1. This is a weak ~y(r.a) = ~ . –

singularity which can be integrated over a surface. In the ~’tir ’20)

modified kernel (12 ) a divergence term of the velocity together

with a gradient term of the Green’s function arises. The
where U. is the unit vector in radial direction. Now consider

an expansion of the disk in the radial direction with an amount
gradient of the singular part (13) of the Green’s function with

Aa. The expansion is chosen such that each point on the
respect to the excitation vector is given by

disk moves over a distance given by Aa(r/a)i&, or has an

expansion velocity of u(r. m) = (r/a)iir. Hence p(r, a) is

(14) given by

This is a strong singularity if the observation and excitation

position vectors coincide. In that case, the second integral in

(11) must be defined by its principal value. This mathematical

difficulty disappears when the velocity vector has at least a

component which is linear in z or y. If we assume that the

velocity (7) is of the form O(T) = (am + ,fly + -y)tir, then the

singular part of the third term of the right-hand side of (10)

can be expanded as

.(/[fl(.c’ -z)+ p(7J’ - y)] (@p;‘)q(i+)(is”. (15)
s<

Using the transformation

{

x’–z=pcos(b
(16)

y’–g=psinq$’

The previous expression becomes

q(r)

‘(”a)=-KM%=- “ ‘
(21)

In this case the total derivative of the charge density at each

point is directly proportional to the charge density at that point.

We check if the IE (11) above is fulfilled. The left-hand side

of (11) is zero as z is a vector lying in the plane of the

perfectly conducting disk. The second part of the right-hand

side of the IE becomes, substituting the Green’s function for

a homogeneous medium

11
—

47rcofr ap
(22)

//

cvcos2@+~sin~cos~ _,
Q’(7- )/ld/ldqi ~~~, The opposite result appears in the first part of the right-hand

S( P side of (11)

which shows that no strong singularities are in fact present.

( )-

q(T’) 1
Therefore, we conclude that the singular behavior of the G(,F I r’)p(r’) = =!= _—

47rfocT
(23)

u P
modified Green’s kernel is not stronger than the one in the

oriEinal IE. and hence the involved computational problems which leads to the desired zero result.

are not of a more severe nature.

V. GENERAL METHOD FOR SOLVING THE INTEGRAL
IV. CHARGE DISTRIBUTION ON A CIRCULAR DISK EQUATION WITH THE METHOD OF MOMENTS

One of the few electrostatic three-dimensional examples We propose the following procedure for solving the pair

where the charge density is known analytically is that of a of IE’s (1) and ( 11): the IE (1) is solved in the “usual”
circular disk on constant potential. The charge distribution for manner with the MoM, i.e., we expand the unknown charge
a circular disk having potential V. in a homogeneous. isotropic distribution over a set of N basis functions B, (F’) as
medium is given by the Maxwell distribution [11]. [12]

N
4vlqJfr 1

q(r, a) = —
“-

(18)
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and after testing with the JV test functions Tt (F) (1) results in

a system of linear equations

N

where K~J and V, are given by

‘J=/L,T’’’/l,B(’’’’’B’ds’)ds’ds‘2’)
v, = l“T,(r) v(i=)ds. (27)

S(

To solve the new IE (11), we expand the unknown total

derivatives of the charge over the same set of ~ basis

functions

N

(28)

The charge density qN (P) given by (24) is an approximation

of the exact charge distribution. The goodness of this approxi-

mation is determined by the choice of basis and test functions

[13]. We use this approximate charge density to construct the

right-hand side of (11), The expansion (24) is introduced in

the IE (11) and the same set of test functions Ti (F) is used to

test (11 ) which leads to the equations

N N

(29)

where

(30)

The mathematical requirements for the basis (expansion) and

test (weighting) functions, used in this procedure, can be found

from [13] and [14]: the basis functions must be in the domain

of the operator A, given by

and simultaneously in the domain of the operator B, given by

Bx =
//

V’. [(a’ – ti)G(F I r’)]x(r’)ds’. (33)
Sf

Furthermore, the basis functions have to form a complete set

for the range of A and B. For simple basis functions such as

pulse basis functions, the first requirement will normally be

fulfilled, the second is much more difficult to prove. For the
test functions, the main requirement is that they can represent

the excitation: they have to be a proper representation of both

the potential and the geometrical derivative of the potential

[14].

By constructing the right-hand side with the approximate

charge density qN (F’), a certain error is introduced. This

error on the right hand is closely related to the error on the

charge which arises from applying the MoM to (1). Little is

known in the literature about this error. From a theoretical

viewpoint, one can say intuitively if the operator B satkfies

some property of boundedness, then the approximate right-

hand side converges to the exact one when increasing the

number of cells, Furthermore, one could argue that the charge

distribution need not be known in a very accurate way to

construct this right-hand side because an integration of the

modified Green’s function V’ . [(v’ - fi)G(7 I ~’)] with the

charge distribution is performed (in most cases, this is a

convolution). Numerical experiments must indicate in how

far errors are introduced by this step. From the results in

the examples in Sections VI, VII, and VIII we can certainly

conclude that this error is negligible.

By using a single set of basis functions and a single

set of test functions for both IE’s, the same system matrix

K = [K;j] appears in the system of (29) as in the original
system (25). Once (25) is solved and the left-hand side of

(29) constructed, only iV2 arithmetic operations are needed to

obtain a geometrical derivative, provided a LU-decomposition

scheme is used when solving the matrix equations.

Usually, a designer is not interested in a very accurate

solution for the charge density at each point but in some global

observable quantities such as the total charge or the capaci-

tance of the conductors, The total charge

surface S< is given by

on the conducting

(34)

and the derivative with respect to the geometrical parameter

.$ by

which can be evaluated once the solution for P(F) and q(r)

is known.

The computational efficiency of the method can be appre-

ciated by considering two possible methods for calculating

derivatives. If we suppose that the surface is divided into lV

cells and that the structure is modified by Al geometrical

parameters, the total number of arithmetic operations for

solving for the geometrical derivatives with the procedure

described above is proportional to lV3/3 + (M+ I)JVz. The

lV3/3 term originates from a LU decomposition scheme. We

contrast this with a central finite difference calculation of the

derivative, i.e., the derivative is estimated by perturbing the

planar surface twice, solving the charge density twice and

taking the difference of the calculated charges or capacitances.

The total number of operations in that case would be iV3/3 +

IV2 + 21kfcz(lV)lV3/3 + lV2 where @(lV) is a factor between
zero and one (but in general closer to one) which takes into

account that for inversion of the perturbed system of equations

some part of the original inverse matrix can be exploited. Our

method is superior in number of operations to the difference

scheme by about a factor of 1 + 2A4cY(~). Furthermore, we

will show that the central finite difference estimate depends
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crucially on the meshing of S<, which is not the case for our

new method.

In the next sections, the approach is illustrated by some

simple electrostatic examples, where a geometrical parameter

is varied over some interval. We emphasise the ideas involved

and not the perfection of using the MoM. We discuss the

relation between the meshing strategies by which discretization

of the structure is performed in the MoM and a central

difference estimate of the desired derivative, contrasting this

with the geometrical derivative calculated by our new method.

VI. CAPACITANCE OF A SINGLE RECTANGULAR PLATE

We consider the case of the capacitance of a rectanguku-

perfectly conducting plate with width w in the x-direction and

length L in the y-direction at a potential of 1 V in free space.

No exact analytical solution of the charge distribution in terms

of the geometrical parameters u), L and space coordinates z

and y is known for this case. We vary the length L of the

plate. In order to obtain the charge density, we subdivide the

plate in a mesh of rectangular cells. The charge distribution

and the geometrical derivative of the charge are expanded in

pulse basis functions and point-matching is used for testing.

The derivation of the matrix elements L,J, given by (30), is

straightforward and is given in the Appendix.

Two meshing strategies are followed during the expansion

of the surface. For the first meshing strategy the elementary

cell dimension is proportionally adapted with the length L of

the plate while the total number of cells remains constant.

We call this meshing strategy the “moving mesh strategy,”

stressing the fact that the mesh moves with the structure. In

the second meshing strategy, we restrict the cell dimension to

a maximum value, The total number of cells will vary with the

value of L, This meshing strategy is called the “fixed mesh

strategy.” emphasizing the fact that the location of the cells

remains fixed. We are interested in the total capacitance of the

plate C = QtOt/V, the derivative of the total capacitance of

the plate with respect to the parameter L, and finally a central

finite difference estimate of this derivative according to the

fixed step two-point formula

(iC _ C(L+ ;) -C(L - ;) +O(hz)

dL – h
(36)

where h is a small variation of the length. Capacitance

values are normalized with a factor 47rcoCr. The geometrical

derivative of the capacitance, as a solution of the integral
equation, is desi gnatcd by IED (integral equation derivative)

while the geometrical derivative, obtained with the finite

difference estimate (e.g., (36)) is designated by FDD (finite

difference derivative).

A. Moving Mesh Strategy

The rectangular plate of dimension 1.0 by 1.0 (in arbitrary

units) is subdivided with eight divisions in the x-direction and

80 in the g-direction. We increase the length L from 1.0 to

10.0 in steps of 0.1 in the y-direction such that the dimension

of a cell varies from 0.0125 to 0.125 and the total number of

cells remains constant at 640 cells. We also calculated the same

0.15

0.11

1234567 8910

Length L of the plate

Fig 1. Capacitance and relative error between the capacitance calculated
with 640 cells and the capacitance calculated with 1280 cells (moving mesh)

0.16

0.14

1234567 891cI

Length L of the plate

Fig. 2. Derivative of the capacltmceand relatlve error betweenthe deriva-
twe of the capacitancecalculatedwith 640 cells and the derivative of the
capacitance calculated with 1280 cells (movmg mesh)

parameter sweep with 160 cells in the y-direction (total of 1280

cells) as a reference result. In Fig. 1 the increasing capacitance

as a function of the length L is shown, together with the

relative error between the capacitance calculated with 640 cells

and the one, calculated with 1280 cells. As expected we see

that the relative error increases with the length or, otherwise

stated, the resolution of the solution (the number of basis

functions per unit length) decreases with the length. In Fig. 2

the IED for the case of 640 cells and the relative error with the

IED, calculated with 1280 cells is shown. The overall relative

error is slightly higher than in Fig. 1 and shows a maximum.

This can be understood as follows: by increasing the length

with a fixed number of cells, the relative error with respect to
the 1280-case for both q(d) and ~ g(d) +v’. V’q(#) increases

because resolution decreases. The total derivative of the charge

however is given by a combination of the & q(~’) +ti’. V’q(#)

and a term containing q(~’) and ~ u = l/L (see (35)). This

last term is decreasing with the length which implies that the

sum must reach a maximum for some value of L.

We now compare the IED with a two point central finite

difference estimate of the capacitance for h = 0.1 and consider

the relative error

~ ,= I(%)ml- (%)FDDI
re

(%)FDD ‘
(37)
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12345678 910

Length L of the plate

0.0006

0

Fig. 3. Relative error between finite difference derivative (two-point and
four-point) and integral equation derivative (moving mesh).

This is a measure for the correspondence between FDD

(dC/dL)F~~, and the IED (dL’/dL)IED. Both values

(dC/dL)FDD and (dC’/dL)m~ differ from the exact value of
the derivative. Large values of (37) can either be due to an

incorrect calculated IED or to a poor estimate of the FDD.

A poor estimate of the FDD can normally be improved by

decreasing the step h or taking more points into consideration.

For example, a better FDD estimate would be given by the

four-point formula

dC _ C(L – 2h) – 8C’(L – h) + 8C(L + h) - C(L + 2h)

dL – 12h

+ 0(h4) (38)

The relative error for the two-point estimate (36) and the four-

point estimate (38) are shown in Fig. 3. The relative errors for

the four-point estimate are extremely small which leads to

the conclusion that the IED almost entirely coincides with the

FDD and that both values must be close to the exact value

(within 0.156% of the 1280 case).

From this example, we can conclude that both the derivative

of the charge and the charge itself are well represented by

the chosen basis functions and that the error, introduced by

approximating the right-hand side of (11), must be negligible

because a FDD gives no better results than the IED. Both

calculated and estimated gradients have a continuous charac-

teristic, hence both could be used directly in an optimization

procedure based on gradient information. For the central dif-

ference estimate, however, the capacitance must be evahtated

twice or four times and a judicious choice of the step width

of the perturbation around the central abscissa point or the

number of points in the finite difference formula must be made,

taking into account the rate of the variation of the capacitance.

In the next subsection we will take the capacitance and the

derivative of the capacitance, calculated with 1280 cells as the

exact reference result.

B. Fixed Mesh Strategy

The rectangular plate with the same initial dimensions and

parameter interval is meshed up in the following way: the total

1.8

1.6

0.2

0

l’++’+-”11X Ill
1 \ 1 1- , I

\l A

4 1 1 I 1 1 1 1 I

1234567 8910

Length L of the plate

*.6

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Fig. 4. Capacitance and relatwe error between the capacitance (fixed mesh)
and the capacitance calculated with 1280 cells.

0.18

g 0.14

‘8
+

~ 0.13 - -
.-
; 0.12 - -.—
%
n 0.11 - *

* ,

+ r0.1

t

— Number of cell,

~ . — .

80

o

1234667 8910

Length L of the plate

Fig. 5. Integral eqnation derivative of the capacitance and finite difference

derivative together with the nnmber of cells in g-direction (fixed mesh).

number of divisions varies in such a way that the inequality

AL=&<r (39)
fvL

is always fulfilled. Here NL is the number of divisions in

the y-direction of L and r is the maximum dimension of one

division in the y-direction. In this case the maximum is chosen

to be 0.125. In Fig. 4 the capacitance and the relative error

between this result and the reference result with 1280 cells

is shown. As expected, this relative error is higher because

of the smaller number of cells for small L values. The error

decreases down to O.14~0 where resolution is the same as in

Fig. 1 (640 cells), Remark that the curve of the relative error

is not continuous because ill can differ for each value of L.

We first compare the IED with the FDD: Fig. 5 shows the

IED and FDD in conjunction with the number of cells in

the y-direction. Remark the difference between the IED-curve

and the FDD-curve. The number of cells in the y-direction
is steadily increasing from 9 to 80 but at certain values of L,

where the inequality (39) is automatically fulfilled, the number

of cells stays constant. At these values of L a discontinuous

behavior of the FDD is observable. The IED, however, has

a perfectly smooth characteristic. The jumpy behavior of the

FDD is magnified when considering the relative error (37)
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Fig. 6 Relatlve emorbetween thetntegral equation derivative and the finite

difference derivative (fixed mesh)

3T -,

1234567 8910

Length L of the plate

Fig 7 Relative error between the integral equation derivative and the

derivative of the capacitance, calculated with 1’280 cells, and relative error

between the finltedifference deriv~tive andtiederivative of the capacitance,

calculated with 1280 cells

between the IEDandthe FDD (see Fig. 6). The relative error

curve jumps from one higher curve to another curve when the

number of cells remains constant. The relative error is small

when the number of cells stays constant. However. when the

number of cells changes in going from one value of L to the

next one, the discretization error changes and the FDD differs

more from the IED. This means that if we want to use a finite

difference formula for obtaining smooth, continuous derivative

estimates the same grid must be used for all parameter values

and consequently the number of cells must be high enough

from the beginning even for small L-values.

A comparison with the capacitance, calculated with 1280
cells, is depicted in Fig. 7. Both estimates differ from the

exact reference result. The FDD is certainly not more accurate,

taking into account the relative error on the capacitance

itself (Fig. 4). Cancellation of discretization errors brings this

estimate closer to the exact curve for small values of L but

at larger values of L. the curve diverges. The FDD converges

smoothly to the exact solution when resolution is increased.
The main conclusion we draw from this example is that if

we change the number of cells when perturbing around some

value of L, a poor discontinuous estimate will result. For a

simple rectangle, as in our case, one can still choose a meshing

strategy such that one knows beforehand for what values of
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Fig. 8. Total chacge and integral equation derivative of the charge
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-15”
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L a change in the number of divisions will occur. For a

general shape however, where a mixed mesh of rectangles and

triangles is used, this prediction of a change in the number of

cells is much more difficult. Due to the possible discontinuous

behavior, the FDD is in general not suitable for use in an

optimization procedure, while the IE method proposed here

does not suffer from this inconvenience,

VII. CAPACITANCE BETWEEN Two EQUIPLANAR

RECTANGULAR PATCHES AS A FUNCTION

OF SEPARATION DTSTANCE

The IE not only allows us to calculate the sensitivity of the

charge with respect to geometrical parameters which directly

modify the shape of the surfaces, such as width or length, but

also with respect to geometrical parameters between surfaces.

To illustrate this, we consider the case of two conducting

plates in the same plane (inset of Fig. 8). The dimensions

are shown on the figure. The distance D between the plates

varies from 0.05 to 0.55 in steps of 0.01. The number of cells

in the z-direction is 20 and 10 in the y-direction. Plate 1

is placed at 1 V and plate 2 at —1 V. In Fig. 8 the positive

charge on plate 1 and the derivative of this charge with respect

to the distance D is shown. The relative error between the

FDD and the IED is depicted in Fig. 9. The relative error is

considered for a two-point FDD (36) and a four-point FDD

(38). The four-point estimate decreases the relative error over

two decades which means that the FDD and IED coincide

entirely, The relative error is higher at the beginning of the

parameter interval because the step size 0.01 is there one-fifth
of the total abscissa value.

VIII. MULTILAYER MULTICONDUCTOR

THIN MICROSTRIP LINES

Under quasi-TEM assumptions, a general two-dimensional

configuration of lV microstrip lines, embedded in a multilay-

ered medium above a ground plane, supports IV eigenmodes,

each characterized by their own mode-impedance and mode-

velocity. For two-layered, single line microstrips, accurate

analytical design formulas exist which for a given character-

istic impedance gives the microstrip width to substrate height

ratio [15]. For coupled lines on a one layered substrate, design
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formulas exist for the odd-mode impedance and even-mode

impedance in terms of physical geometry [16]. For a gen-

eral multiconductor transmission line more approximations—if

possible—must be made to obtain analytical formulas for

the geometrical dimensions in terms of mode-impedances or

capacitance matrix and inductance matrix elements.

For a more accurate calculation of two-dimensional (2-D)

or three-dimensional (3-D) capacitance matrices of general

multiconductor interconnects in a multilayered medium the

integral equation method is a commonly used technique. The

integral (11) is also applicable to calculation of derivatives

of capacitances of such strips. Here we will only consider

infinitely thin perfectly conducting strips. In that case the

surface becomes a line and the velocity v also becomes

one dimensional. As the inductance calculation reduces to an

equivalent so-called vacuum capacitance calculation [9], we

can not only obtain geometrical derivatives of capacitances but

it also becomes possible to obtain derivatives for the mode-

impedances and mode-velocities and to design the physical

geometry for, e.g., given mode-impedances. To illustrate this

we consider two examples:

A. A Three-Layered Single Microstrip Line

As a first example we consider a microstrip in a three-

layered medium [17], [18], which is depicted in Fig. 10 and

where H = 0.206h, Cl = 9.66., e2 = 2.6eo and the top layer is

air. We calculate the derivative of the characteristic impedance

and effective permittivity with respect to the width w of the

microstrip (or w/h holding h constant). The Green’s function

for the layered substrate was approximated with complex

images [19], [20]. The error introduced by this approximation

is neglible (0.000 175’% on the Green’s function in the spectral

domain). For the microstrip 500 pulse basis functions were

used. In Fig. 10, the effective dielectric constant is shown

together with the derivative with respect to the aspect ratio
w/h for nmow lines (w”/h < 1). In Fig. 11 the characteristic

impedance and the derivative of the characteristic impedance

with respect to w/h is depicted. The maximum relative error

between the IED and FDD for the effective @electric constant

is 0.00162910. The maximum relative error ~between the IED

and the FDD for the characteristic impedance was 0.0039%.
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Fig. 10. Effective dielectric constant and derivative of the effective dlelectnc

constant with respect to w/h.
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Fig. 11. Characteristic impedance and derwative of the characteristic
impedance with respect to tu/h.

B. Three Symmetrical Coupled Microstrip Lines

As a second example we consider a symmetrical three-line

microstrip configuration as in [21]. The geometry is depicted

in Fig. 12 and the dimensions are w = h = 25 roil, G = 9.8

and the top layer is air, These three parallel coupled lines

can be used for the design of compact band-pass filters [22].

Under quasi-TEM assumption, the structure supports three

fundamental modes which we denote by EE, OE, and 00

as in [21]. The mode-impedances are given by

where c is the velocity of light, CZ,diel the mode capacitance,

when the substrate is present, CZ,.ir the mode capacitance

when the substrate is replaced by air and x is equal to EE, OE

or 00. These mode capacitances CZ ,diel (or CZ ,air) are given

in terms of the capacitance matrix elements Cij as (omitting

the subscript air or diel)

–(c,, – c,, + C13) – J (C,, – C,, + C,3)2 + 8C&
p=

2c~2

COE = Cll – C13

CEE = Cll + pc12 + C13

coo = C.22 – pclz. (41)
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respect to .5 as a function of s/b for w/h = 1.

Once the capacitance matrix and the derivative of the capaci-

tance matrix with respect to a geometrical parameter have been

determined, the derivatives of the mode-impedances can easily

be found. For each strip 100 basis functions were used. The

mode-impedances together with the derivatives with respect

to the parameter s (or s/h, holding h constant) are calculated

with the method presented above and shown in Fig. 12. Again

excellent agreement with a FDD was obtained.

IX. CONCLUSION

A new IE for the derivative of the charge with respect

to some geometrical parameter has been derived using a

transport theorem. The geometrical parameter modifies the

shape of the surface or is related to distances between the

surfaces. The solution of the new IE can be efficiently found

by solving for the charge density by the MoM, substituting

the charge solution in the new IE and applying the MoM

on the new IE with the same set of basis functions and test

functions as used for solving the original IE. We showed

the applicability of this procedure for various planar three

dimensional and two dimensional capacitance calculations,

The obtained derivatives are perfectly continuous and smooth

and above all this continuity is independent of the structure

meshing, contrary to derivatives which are obtained by a

central finite difference estimate. Most of all we emphasise

the fact that no perturbed geometry problem must be solved,

since the derivatives are obtained from one single solution of

the problem. Thus. a computationally efficient method, based

on an accurate integral equation technique, has been developed

to obtain the sensitivity of the solution with respect to a geo-

metrical parameter. Furthermore, it was shown that our method

can also be used to obtain derivatives for mode impedances

and mode velocities as illustrated for some coupled microstrip

line configurations.

APPENDIX

x ((?4’ - y)’+ (@_ ~)2 + ~~)1,2d~’dy’ (42)

where Z = : – ~j remains constant and where

h] Axl
xl.xj——

2
r’=xj+—

2

AY~ A7Jj “

(43)

Y~=YJ–~ Y’=Yj+y

After integration (42) yields

1
V(x, y,z) = —

{ [

(c+ A)(d+B)
(x, - ~) 10!3 (~+ C)(c + ~)

47rEofr 1
h

+ & log
[

(d+ B)(d+c)
(c+ D)(c+A) 1

[

(a+ A)(b+13)

‘(y’ ‘Y)]og (b+ D)(a+c) 1
‘Yj log

+~

[

(b+ B)(b+D)
(a+ C)(a+A) 1
[1– Z arctan ~

[

_ z arctan g

ZB

[1ad

[
+ z arctan ~ + z ar~tan I!

ZL }
(44)

where

Axl Axl
a.xJ— — b=xj+~–x

2 ‘x

&] A yJc=yj– —
2 ‘y

d=yj+~–y (45)

A=~u2+c2+z’ B=@+dz+z2

C= V’u2+d2+z2 D=~b2+cz+Zz. (46)

B. Calculation of the Matrix Elements L,l

In the case the velocity vector is given by fi = aytiy, the

matrix elements L,j in free space can be written as follows

{

(Y’ - Y,)

1x ((x’ – xi)2 + (L/’– u)’ + z2)l/’ ‘X’dy’’47)
where (x,, y,. zi ) is the center point of the observation cell.
This can be simplified into the following result

with the same notations as in (45) and (46) but with the x

replaced by x, and the y by y,.
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